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1. INTRODUCTION AND PRELIMINARIES 

 

It is well know that the set of positive real numbers ℝ+ is not complete according to the usual metric. To overcome this 

problem, in 2008, Bashirov et al. [2] introduced the concept of multiplicative metric spaces as follows:                                                                                                                                                                   
 

Definition1.1. ([2]) Let X be a non-empty set. A multiplicative metric is a mapping d: X×X → ℝ+ satisfying the 
following conditions: 

  (i) d(x, y) ≥ 1 for all x, y ∈ X and d(x, y) = 1 if and only if x=y; 

  (ii) d(x, y) = d(y, x) for all x, y ∈ X; 

  (iii) d(x, y) ≤ d(x, z). d(z, y) for all x, y, z ∈ X (multiplicative triangle inequality). 

Then mapping d together with X i.e., (X, d) is a multiplicative metric space. 
 

Example1.2. ([10]) Let d: ℝ × ℝ→ [1, ∞) be defined as  

      d(x, y) = a x−y  ,where x, y ∈ ℝ and a > 1. Then d(x, y) is a multiplicative metric and (X, d) is called a 
multiplicative metric space. We call it usual multiplicative metric spaces. We note that neither every metric is 

multiplicative metric nor every multiplicative metric is metric. The mapping d∗ defined above is multiplicative metric 

but not metric as it doesn’t satisfy triangular inequality. Consider d∗(
1

3
, 

1

2
) + d∗(

1

2
, 3) = 

3

2
 + 6 = 7.5 < 9 = d∗(

1

3
, 3).  

On the other, hand the usual metric on R is not multiplicative metric as it doesn’t satisfy multiplicative triangular 

inequality, since d(2, 3) · d(3, 6) = 3 < 4 = d(2, 6). 

One can refer to ([8]) for detailed multiplicative metric topology. 
 

Definition1.3.([8]) Let (X, d) be a multiplicative metric space. A sequence {xn} in X said to be a 

(i) multiplicative convergent sequence to x, if for every multiplicative open ball                       Bϵ(x) = { y | d(x, y) < ϵ} , 

ϵ > 1, there exists a natural number N such that  xn  ∈ Bϵ(x) for all                      n ≥ N, i. e, d(xn , x) → 1 as n → ∞. 

(ii) multiplicative Cauchy sequence if for all ϵ > 1, there exists N ∈ ℕ such that d(xn , xm) < ϵ                                      for 

all m, n > N i. e , d(xn , xm ) → 1 as n → ∞. 
A multiplicative metric space is called complete if every multiplicative Cauchy sequence in X is  multiplicative 

converging to  x ∈ X. 

In 2012, Özavşar and Çevikel[8] introduced the concepts of Banach-contraction, Kannan-contraction, and Chatterjea-

contraction mappings in the sense of multiplicative metric spaces as follows:  

 (Banach-contraction). Let (X, d) be a complete multiplicative metric space and let f: X → X be a multiplicative 

contraction if there exists a real constant λ ∈ [0, 1) such that  

           d(f(x), f(y)) ≤ d(x, y)λ for all x, y ∈ X. Then f has a unique fixed point. 

(Kannan-contraction). Let (X, d) be a complete multiplicative metric space. Suppose the mapping f : X → X satisfies 
the contraction condition 

         d(fx, fy) ≤ (d(fx, x) · d(fy, y))λ, for all x, y ∈ X, where λ ∈ [0, 
1

2
). 

 Then f has a unique fixed point in X and for any x ∈ X, iterative sequence (fn(x)) converges to the fixed point. 

 

(Chatterjea-contraction). Let (X, d) be a complete multiplicative metric space. Suppose the mapping f : X → X 

satisfies the contraction condition 
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        d(fx,fy) ≤ (d(fy, x) · d(fx, y))λ, for all x, y ∈ X, where λ ∈ [0, 
1

2
). 

Then f has a unique fixed point in X and for any x ∈ X, iterative sequence (fn(x)) converges to the fixed point. 

 

2. MAIN RESULTS 

 

Theorem 2.1. Let (X, d) be a complete multiplicative metric space. Suppose the mapping  

f : X → X be a self- mapping satisfies the  following condition: 

 (2.1) d(fx,fy)≤ [d(x, y)]a1 . [d(x, fy)]a2 . [d(fx, y)]a3 . [d(fy, y)]a4 . [d(fx, x)]a5 ,  
for all x, y ∈ X, where a1, a2, a3, a4, a5  ≥ 0 and a1+ 2a2+2a3 + a4+a5 < 1 

Then f has a unique fixed point in X. 

Proof. Let{xn}be a sequence in X, defined as follows. 

Let x0 ∈ X, f(x0) = x1,f(x1) = x2,···,f(xn) = xn+1,···. 

From (2.1), we have 

d(xn , xn+1) = d(Txn−1,Txn) 

                   ≤ [d(xn−1 , xn)]a1 . [d(xn−1 , fxn)]a2 . [d(fxn−1 , xn)]a3 . [d(fxn , xn)]a4 . [d(fxn−1 , xn−1)]a5 

                   ≤ [d(xn−1 , xn)]a1 . [d(xn−1 , xn+1)]a2 . [d(xn , xn)]a3 . [d(xn+1 , xn)]a4 . [d(xn−1 , xn)]a5 

          On simplification, we have         

d(xn , xn+1) = d(Txn−1,Txn)    ≤ [d(xn−1 , xn)]a1+a2+a3+a5 . [d(xn+1 , xn)]a2+a3+a4  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−1 , 𝑥𝑛 )]ℎ, 

where h = 
𝑎1+𝑎2 +𝑎3+𝑎5

1−(𝑎2+𝑎3+𝑎4)
 < 1. 

Similarly, d(𝑥𝑛−1, 𝑥𝑛 ) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)]ℎ , 

d(𝑥n , 𝑥𝑛+1) ≤ [𝑑(𝑥𝑛−2 , 𝑥𝑛−1)]ℎ2
. 

Continue like this we get,  

d(𝑥𝑛 , 𝑥𝑛+1) ≤ [𝑑(𝑥0 , 𝑥1)]ℎ𝑛
 

For n > m, d(𝑥𝑛 , 𝑥𝑚 ) ≤ d(𝑥𝑛 , 𝑥𝑛−1) · d(𝑥𝑛−1, 𝑥𝑛−2) · · · d(𝑥𝑚 , 𝑥𝑚+1) 

                                  ≤ 𝑑(𝑥0 , 𝑥1) ℎ
𝑛−1+ℎ𝑛−2+⋯ℎ𝑚

 

                                   ≤ 𝑑(𝑥0 ,𝑥1) 
ℎ𝑚

1−ℎ  . This implies d(𝑥𝑛 , 𝑥𝑚) →1(n, m → ∞). 

Hence (𝑥𝑛 ) is a Cauchy sequence. By the multiplicative completeness of X, there is z ∈ X such that 𝑥𝑛  → z (n →∞). 

Now we show that z is fixed point of f .From (2.1), we have 

d(fz, z) ≤ d(f𝑥𝑛 ,fz). d(f𝑥𝑛z) 

 ≤ [𝑑(𝑧, 𝑥𝑛 )]𝑎1 . [𝑑(𝑥𝑛 , 𝑓𝑧)]𝑎2 . [𝑑(𝑓𝑥𝑛 , 𝑧)]a3 . [d(fz, z)]a4 . [d(fxn , xn)]a5  

d(fz, z) ≤ [d(z, fz)]a2+a4  gives fz = z, i.e., z is a fixed point of f. 

Uniqueness: Suppose  z, w (z ≠ w) be two fixed point of f, then from (2.1), we have 

d(z, w) = d(fz, fw) 

                  ≤ [d(z, w)]a1 . [d(z, fw)]a2 . [d(fz, w)]a3 . [d(fw, w)]a4 . [d(fz, z)]a5  

d(z, w) ≤ [d(z, w)]a1+a2+a3  this implies that d(z, w) = 1 i.e., z = w. 

Hence f has a unique fixed point . 

Corollary 1.Putting a2 = a3 = a4 = a5  = 0 gives Banach-contraction[8].  

Corollary 2.Putting a1 = a2 = a3 =  0,  a4 = a5 gives Kannan-contraction[8].  

Corollary 3.Putting a1 = a4 = a5 = 0,  a2 = a3 gives Chatterjea-contraction[8].  

Corollary 4.Putting a4 = a5 = 0, gives Isufati results[5] in the sense of multiplicative metric spaces.  

Corollary 5.Putting a4 = a5 = 0, a2 = a3 gives Reich results[9] in the sense of multiplicative metric spaces.  
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